Codice Fiscale: 97785560158 Tel: +39 375 531 6594

e-mail: matemupper@matemupper.com Web: matemupper.com

Limiti: Verso l'infinito e... — una lezione con Thomas

Intorni

Definizione: Intorno

Prendiamo un numero reale $x_0 \in \mathbb{R}$, allora chiamiamo **intorno** di x_0 , e lo indichiamo con $I(x_0)$, un qualsiasi intervallo aperto contenente x_0 .

Esempio: Se prendiamo $x_0 = 3$, un intervallo aperto che lo contiene è dato da I(3) = (2; 5). Questo è un esempio di intorno di $x_0 = 3$.

Esercizio

Quale dei seguenti intervalli è un intorno di $x_0 = 0$?

- 1. A = (-2; -1);
- 2. B = (-1; 3];
- 3. C = [0; 4];
- 4. D = (-3; 10).

In generale, se cerchiamo un intorno di $x_0 \in \mathbb{R}$ ci basta considerare $a, b \in \mathbb{R}$ tali che $a < x_0 < b$, così da avere l'intorno $I(x_0) = (a; b)$. In alternativa, se consideriamo δ_1, δ_2 numeri reali e positivi, allora anche $I(x_0) = (x_0 - \delta_1; x_0 + \delta_2)$ è un intorno di x_0 .

Con la notazione appena introdotta possiamo elencare alcuni intorni particolari:

• Nel caso in cui $\delta_1 = \delta_2 = \delta$, quello che otteniamo viene detto **intorno circolare** di x_0 e può essere indicato come $I_{\delta}(x_0)=(x_0-\delta;x_0+\delta)$ che rappresenta l'insieme dei numeri reali che hanno distanza da x_0 inferiore a δ , ovvero gli $x \in \mathbb{R}$ tali che $|x - x_0| < \delta$;

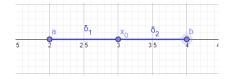


Figura 1: Intorno circolare di $x_0 = 3$

- Se $\delta_1 = 0 \neq \delta_2$ otteniamo un intorno della forma $I(x_0) = (x_0; x_0 + \delta_2)$ che racchiude solo valori a destra di x_0 , da cui il nome: **intorno destro** di x_0 . Indichiamo questo intorno come $I^+(x_0)$;
- Analogamente, se è $\delta_1 \neq 0 = \delta_2$ abbiamo un intorno $I(x_0) = (x_0 \delta_1; x_0)$ che è a sinistra del valore x_0 considerato e, per questo motivo, lo chiamiamo **intorno sinistro** di x_0 . Indichiamo questo intorno come $I^-(x_0)$;

Un altro caso particolare di intorni è quello in cui, invece di scegliere x_0 come numero reale, scegliamo $x_0 = \pm \infty$. In questi casi, come sappiamo, non potremo prendere intervalli del tipo

(a;b), con a e b numeri reali, che contengano $+\infty$ o $-\infty$, in un certo senso potremmo dire che l'unica possibilità che abbiamo è di prendere solo intorni destri per $-\infty$, quindi intervalli del tipo $(-\infty; a)$, e intorni sinistri per $+\infty$, cioè $(b; +\infty)$. Nel primo caso abbiamo quello che viene chiamato intorno di $-\infty$ e, analogamente, nel secondo caso abbiamo un intorno di $+\infty$.

In altre parole un intorno di $-\infty$ è semplicemente un insieme costituito da tutti i numeri reali più piccoli di un certo valore a, come un intorno di $+\infty$ è un insieme di tutti quei numeri che sono maggiori di un altro numero b.

Limiti

Il nostro scopo in questo paragrafo sarà quello di capire come possiamo studiare una funzione vicino ad punto x_0 , senza però dover calcolare il suo valore in x_0 . Questo può essere molto utile in quei casi in cui non è facile (o non è proprio possibile) calcolare il valore della funzione in quel particolare punto, come negli esempi seguenti:

• Prendiamo

$$f(x) = \frac{x^2 - 2x - 3}{x - 3}$$

come è facile immaginare nel punto $x_0=3$ non è così semplice capire che valore assuma la

• Se consideriamo $f(x) = \log(x)$, cosa succede vicino ad $x_0 = 0$?

Per farci un'idea di come si comporti la funzione senza dover valutare $f(x_0)$ potremmo guardare cosa succede vicino al punto, cioè studiare il comportamento della funzione in un intorno di x_0 . Più piccolo sarà questo intorno, più saremo vicini al punto x_0 e più ci avvicineremo a capire cosa succede alla funzione in x_0 .

Prendiamo ad esempio la prima funzione:
$$f(x) = \frac{x^2 - 2x - 3}{x - 3}$$
.

Il suo dominio sarà $D = \mathbb{R} - \{3\}$, poiché in $x_0 = 3$ il denominatore si annulla. Questo significa che non potremo dire chi è f(3) sostituendo e facendo i conti, in quanto la funzione non è definita in quel punto, tuttavia se osserviamo il grafico di questa funzione, la situazione non ci sembra così complicata:

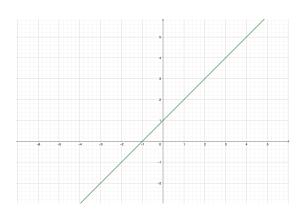


Figura 2: Grafico di $f(x) = \frac{x^2 - 2x - 3}{x - 3}$

In effetti, se proviamo ad ingrandire l'immagine, ci accorgiamo che per x vicino a 3 la funzione passa molto vicino a 4. Per essere più formali, se prendiamo un intorno di 3, e per semplificarci la vita prendiamo un intorno circolare, cioè scegliamo un valore positivo δ e prendiamo $I_{\delta}(3) = (3 - \delta; 3 + \delta)$, allora possiamo osservare che per δ abbastanza piccolo, preso un qualsiasi $x \in I_{\delta}(3)$, anche $|f(x)-4|^{[1]}$ risulta piccola.

Ma cosa significa piccola? La risposta è soggettiva, ad esempio per noi un oggetto è vicino se possiamo prenderlo in pochi passi, quindi se è a qualche metro da noi, mentre per una formica il discorso potrebbe essere diverso. Per risolvere questo problema legato alla

¹Dove ricordiamo che il risultato di |f(x)-4| non è altro che la distanza tra f(x) e 4.

parola piccola, prendiamo ε un valore positivo fissato, allora diciamo che |f(x)-4| è piccolo quando $|f(x)-4|<\varepsilon$. Adesso, a seconda del contesto, sceglieremo il valore ε che più si addice a descrivere una quantità piccola.

Una volta fissato questo ε ci chiediamo: x quanto deve essere vicino a $x_0 = 3$ perché |f(x) - 4| < ε ? In altre parole, quanto può essere largo un intorno circolare $I_{\delta}(x_0)$ perché ogni x in questo intorno (tranne al più x_0) faccia avverare la disequazione di prima?

Con qualche conto possiamo vedere che:

$$|f(x) - 4| < \varepsilon \iff \left| \frac{x^2 - 2x - 3}{x - 3} - 4 \right| < \varepsilon$$

cioè

$$-\varepsilon < \frac{x^2-2x-3}{x-3}-4 < \varepsilon$$

scomponendo il numeratore come $x^2 - 2x - 3 = (x+1)(x-3)$ vediamo che

$$-\varepsilon < \frac{(x+1)(x-3)}{x-3} - 4 < \varepsilon$$
$$-\varepsilon < x+1-4 < \varepsilon$$
$$3-\varepsilon < x < 3+\varepsilon$$

cioè la risposta alla nostra domanda sarà che per avere $|f(x)-4| < \varepsilon$ dovrà essere $x \in (x_0-\varepsilon;x_0+\varepsilon)$ ε), ovvero l'intorno circolare che cercavamo si ha per $\delta = \varepsilon$. Capiamo quindi che per qualsiasi valore positivo che scegliamo per ε potremo sempre trovare un intorno di x_0 abbastanza piccolo per contenere solo valori di x tali che $|f(x)-4|<\varepsilon$.

Per riassumere tutta questa frase in poche parole diremo che per x che tende a 3, la funzione ha limite 4. Otteniamo in questo modo la seguente

Definizione: Limite di una funzione

Una funzione f(x) definita in un intorno di x_0 (tranne al più in x_0 stesso) ha **limite** l per xche tende ad x_0 e scriviamo

$$\lim_{x \to x_0} f(x) = l$$

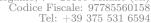
se per ogni $\varepsilon > 0$ esiste un intorno $I_{\delta}(x_0)$ contenuto nel dominio di f (tranne al più per x_0) tale che per ogni $x \neq x_0$ con $x \in I_{\delta}(x_0)$ si abbia $|f(x) - l| < \varepsilon$.

Utilizzando i simboli possiamo esprimere il significato di

$$\lim_{x \to x_0} f(x) = l$$

nel seguente modo:

$$\forall \varepsilon > 0, \exists \delta > 0 : |f(x) - l| < \varepsilon, \forall x \in I_{\delta}(x_0), x \neq x_0$$



Esercizi

Utilizzando la definizione di limite verificare che

$$\lim_{x \to x_0} f(x) = l$$

per

•
$$x_0 = 0$$
, $f(x) = \sqrt{x+1} - 2$, $l = -1$;

•
$$x_0 = 2$$
, $f(x) = \frac{1}{x-1}$, $l = 1$;

•
$$x_0 = 4$$
, $f(x) = \log_2(x) - 4$, $l = -2$;

•
$$x_0 = 3$$
, $f(x) = e^{x+2}$, $l = e^5$;

•
$$x_0 = -1$$
, $f(x) = \frac{x^2 - 1}{x + 1}$, $l = -2$;

•
$$x_0 = 2$$
, $f(x) = \frac{3x^2 - x + 4}{x + 5}$, $l = 2$;

Limite destro e limite sinistro

Come abbiamo visto, per gli intorni ne esistono di diversi tipi: intorno (circolare), intorno destro e intorno sinistro. A ciascuno di questi corrisponde un limite. Come abbiamo visto ora, nel caso dell'intorno (circolare) abbiamo il limite "standard", ma nel caso in cui una funzione fosse definita solo a destra o solo a sinistra rispetto ad un certo x_0 potremmo rifare il discorso appena fatto considerando, invece che l'intorno circolare $I_{\delta}(x_0)$, un intorno destro $I^+(x_0)$ o un intorno sinistro $I^-(x_0)$ a seconda dei casi, ottenendo così il **limite destro** e il **limite sinistro**.

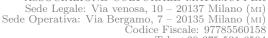
Più precisamente, il **limite destro** di una funzione f(x) o **limite** di f(x) per x che tende ad x_0 da destra è uguale ad l e, in tal caso, scriviamo

$$\lim_{x \to x_0^+} f(x) = l$$

se preso un qualsiasi $\varepsilon > 0$ esiste un intorno destro di x_0 in cui $|f(x) - l| < \varepsilon$, ovvero esiste $\delta > 0$ per cui $\forall x \in I^+(x_0) = (x_0; x_0 + \delta)$ si ha che $|f(x) - l| < \varepsilon$. Analogamente, se invece di prendere un intorno destro prendiamo un intorno sinistro (cioè $I^-(x_0) = (x_0 - \delta; x_0)$) otterremo il **limite** sinistro o limite per x che tende ad x_0 da sinistra, indicato con

$$\lim_{x \to x_0^-} f(x) = l.$$

Questo può essere utile per quelle funzioni che sono definite solo a destra o a sinistra di un certo punto, come per \sqrt{x} se volessimo studiarla in $x_0 = 0$, oppure per le funzioni definite a tratti.



Tel: $+39\ 375\ 531\ 6594$ e-mail: matemupper@matemupper.com Web: matemupper.com

Esercizi

Studiamo il limite destro

$$\lim_{x \to x_0^+} f(x)$$

e sinistro

$$\lim_{x \to x_0^-} f(x)$$

per le seguenti funzioni:

•
$$f(x) = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$
, in $x_0 = 0$;

•
$$f(x) = \begin{cases} x+2, & \text{se } x \ge 1\\ \frac{1}{x+3}, & \text{se } x < 1 \end{cases}$$
, in $x_0 = 1$;

•
$$f(x) = \begin{cases} \log(x+2), & \text{se } x \ge -1 \\ -x^2, & \text{se } x < -1 \end{cases}$$
, in $x_0 = -1$;

• $x_0 = 2$, $f(x) = \sqrt{x-2}$; (attenzione a questo esercizio!)

Alcuni casi particolari

Ricordiamo che, parlando di intorni, abbiamo anche studiato gli intorni di più e meno infinito. Allo stesso modo potremo quindi avere i limiti per x che tende a $+\infty$ o $-\infty$, e che saranno l'analogo di quanto visto finora, con l'eccezione che l'intorno considerato è un intorno di $+\infty$ o $-\infty$ a seconda del caso in questione. Ad esempio, presa la funzione $f(x) = \frac{1+x}{x}$, allora avremo che

$$\lim_{x \to +\infty} f(x) = 1$$

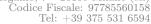
infatti osserviamo che, per $\varepsilon > 0$, allora

$$|f(x) - 1| = \left| \frac{1+x}{x} - 1 \right| = \left| \frac{1+x-x}{x} \right| = \left| \frac{1}{x} \right|$$

vogliamo quindi trovare un valore $\delta > 0$ che ci fornisca un intorno di $+\infty$, che ricordiamo è $(\delta; +\infty)$, tale che ogni $x \in (\delta; +\infty)$ verifichi $|f(x) - 1| < \varepsilon$, ovvero

$$\frac{1}{|x|} < \varepsilon$$

Come si vede facilmente, basterà scegliere $\delta = \frac{1}{\varepsilon}$ per soddisfare tale condizione.



Esercizi

Utilizzando la definizione di limite verificare che

$$\lim_{x \to x_0} f(x) = b$$

per

•
$$x_0 = +\infty$$
, $f(x) = \frac{1}{x}$, $l = 0$;

•
$$x_0 = +\infty$$
, $f(x) = \frac{2x^2}{x^2 + 1}$, $l = 2$;

•
$$x_0 = -\infty, f(x) = e^x, l = 0;$$

•
$$x_0 = -\infty$$
, $f(x) = \frac{x}{2 + x^2}$, $l = 0$;

Limiti finiti, infiniti e non esistenti

Prendiamo un attimo in considerazione la funzione $f(x) = \frac{1}{x^2}$. Sappiamo che il suo dominio è $\mathbb{R} - \{0\}$ e vorremmo quindi capire cosa succede vicino ad $x_0 = 0$ con gli strumenti appena studiati.

Se prendiamo x vicino a zero, ad esempio $x=\frac{1}{3}$ ci accorgiamo che $x^2=\frac{1}{9}$ e quindi f(x)=9. Preso $x=\frac{1}{5}$, allora f(x)=25; con $x=\frac{1}{10}$ $f(x)=100,\ldots$ Insomma, abbiamo capito che più x si avvicina a zero più f(x) aumenta^[2]. In effetti possiamo osservare che per qualsiasi valore positivo M>0 che scegliamo, esiste $\delta>0$ per cui se $x \in I_{\delta}(x_0), x \neq x_0$ f(x) > M. Quando succede questo diciamo che f(x) tende a $+\infty$ per x che tende ad x_0 e scriviamo

$$\lim_{x \to x_0} f(x) = +\infty$$

Esercizio: Si ha una situazione simile per la funzione $f(x) = -\frac{1}{x^2}$ Sapreste descrivere cosa succede vicino ad $x_0 = 0$ e ricavare la definizione di limite uguale a $-\infty$ che ne consegue?

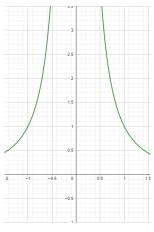


Figura 3: Grafico di $f(x) = \frac{1}{x^2}$

 $^{^2}$ In realtà abbiamo visto che se x si avvicina a zero da destra succede questo, sapreste dire cosa succede se invece x si avvicina a zero da sinistra?

Esercizi

Utilizzando la definizione di limite verificare che

$$\lim_{x \to x_0} f(x) = l$$

per

•
$$x_0 = 1$$
, $f(x) = \frac{1}{(x-1)^2}$, $l = +\infty$;

•
$$x_0 = 0$$
, $f(x) = \ln |x|$, $l = -\infty$;

•
$$x_0 = 0, f(x) = \frac{1}{x}, l = \pm \infty$$
; (attenzione a questo esercizio!)

Consideriamo adesso la funzione $f(x) = \sin x$. Ci chiediamo cosa succede per x che tende a $+\infty$ o, in altre parole, vorremmo capire quanto vale l per cui

$$\lim_{x\to +\infty}\sin x=l$$

ovvero tale che per ogni $\varepsilon > 0$ esiste M > 0 tale che se x > M allora $|f(x) - l| < \varepsilon$. Sapendo che $\sin x$ assume solo valori tra -1 ed 1, cerchiamo l in questo intervallo, tuttavia, per quanti tentativi facciamo, ci accorgiamo che non è possibile trovare un valore adatto. Diremo quindi che tale limite non esiste.

In generale, diremo che una funzione f(x) non ammette limite per x che tende ad x_0 se, qualsiasi valore di l si scelga, esiste almeno un $\varepsilon > 0$ per cui non è possibile trovare un intorno di x_0 tale che $|f(x) - l| < \varepsilon$.

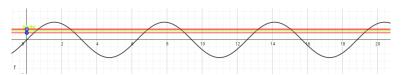


Figura 4: Il limite di $\sin(x)$ con $x \to +\infty$ non esiste